# RHR HEAT RECOVERY UNIT CATALOGUE





### Heat Recovery Ventilators

Inner air quality and energy efficiency are the new trends for offices , residences , houses and such places. Heat recovery units are perfect solution for these needs and they are highly demanded. Heat Recovery units are exhausting stall air while supplying fresh air. While changing the stall air with fresh air, it transfers the energy of the inner air to the fresh air through a heat exchanger without mixing the stall air with fresh air. So finally, the need for fresh air had been supplied and energy had been saved through the unit.

Main functions of the unit are: -Exhausting stall air -Supplying fresh air -Filtering fresh air -Recovering energy of the inner air by transfering their energy to supplied fresh air

#### Specifications

-Easy mounting of the unit thanks to alternative exits -Easy maintenance to all components -Optional usage with electrical heater or water coil -High thermal efficiency -Low noise level thanks to high efficient plug fans -Flameproof type isolation -G4 class filter -5 speed fans

-Smart automation of the unit with optional automation boards



#### Easy Maintenance of the Components

mation reminds service time.

#### **High Efficient Exchangers**

ses total heating and cooling needs of the area where they are planned to be used.

#### Plug Type Fans

• AC, Plug type fans are preferred because of their high efficiency and low noise levels.

#### **Inner Isolation**

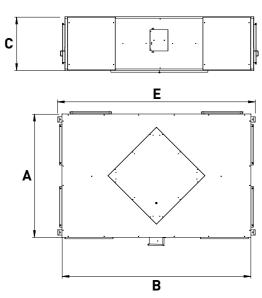
to comply with the fire regulations of the buildings.

### **Technical Specifications**

 Heat recovery ventilators need periodical maintenance. All components of the unit are mounted on the rails letting them easily out for maintenance. The filters should be serviced after 1.200 working hours which auto-

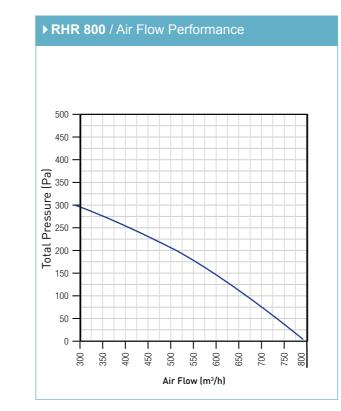
• The exchangers having certified performances are being used in our heat recovery ventilators. They are high efficient, thanks to design and structure, which creates big amount of energy saving. This saving also decrea-

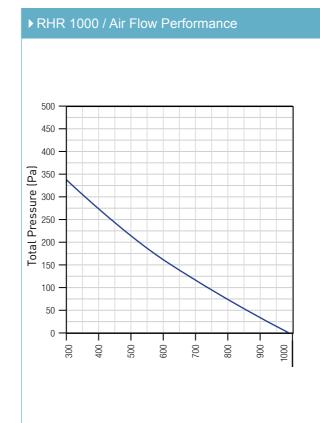
· Flame proof polyutrethane foams are used for thermal and sound isolation. This kind of isolation lets our unit


|                         |        |     | RHR  |      |      |            |      |      |      |      |
|-------------------------|--------|-----|------|------|------|------------|------|------|------|------|
|                         |        | 800 | 1000 | 1500 | 2000 | 2500       | 3000 | 4000 | 5000 | 6000 |
| Electrical Connections  |        |     |      |      |      | 1~230 V 50 | ) Hz |      |      |      |
|                         |        |     |      |      |      |            |      |      |      |      |
| Air Flow [1]            | m³/h   | 800 | 1000 | 1500 | 1900 | 2400       | 2970 | 3830 | 4700 | 5200 |
| Sound Level (2)         | dB (A) | 44  | 45   | 46   | 48   | 49         | 50   | 52   | 53   | 59   |
| Electrical Requirements |        |     |      |      |      |            |      |      |      |      |
| Fan/motor Power (3)     | W      | 204 | 310  | 420  | 1030 | 1030       | 750  | 940  | 1360 | 1900 |
| Maximum Current         | (A)    | 0,9 | 1,4  | 1,9  | 4,5  | 4,5        | 3,5  | 4,7  | 6    | 6    |

D

F


G


<sup>1</sup> Airflow data when the ESP is 0 Pa.
<sup>2</sup> Sound levels are measured at 250Hz and at 1,5m distance.
<sup>3</sup> Power consumption



|     |       | Dimensions (mm) |      |     |      |      |     |     |             |
|-----|-------|-----------------|------|-----|------|------|-----|-----|-------------|
|     | MODEL | A               | В    | С   | D    | E    | F   | G   | Weight (kg) |
|     | 800   | 660             | 1230 | 355 | 795  | 1312 | 200 | 200 | 51          |
|     | 1000  | 660             | 1230 | 355 | 795  | 1312 | 200 | 200 | 52          |
|     | 1500  | 910             | 1430 | 360 | 1045 | 1510 | 170 | 270 | 72          |
| RHR | 2000  | 910             | 1430 | 430 | 1045 | 1510 | 250 | 300 | 84          |
| 고   | 2500  | 1170            | 1790 | 425 | 1300 | 1870 | 300 | 300 | 103         |
|     | 3000  | 1170            | 1790 | 515 | 1300 | 1870 | 370 | 370 | 116         |
|     | 4000  | 1170            | 1890 | 515 | 1300 | 1970 | 370 | 370 | 125         |
|     | 5000  | 1380            | 1990 | 645 | 1455 | 2070 | 432 | 432 | 186         |
|     | 6000  | 1380            | 1990 | 645 | 1455 | 2070 | 432 | 432 | 199         |

## Performance Datas





| Model                  | RHR 800   |                                  |  |  |
|------------------------|-----------|----------------------------------|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |
| Max. Power Consumption | W         | 204                              |  |  |
| Air Flow               | m³/h      | 800                              |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |
| SFP Results            | kW/(m³/s) | 0,898                            |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |
| Sound                  | dB        | 44                               |  |  |

Temperature Efficiency; ŋ

 $-\frac{T_2 - T_1}{T_2 - T_1} \times 100\%$ T.-T.

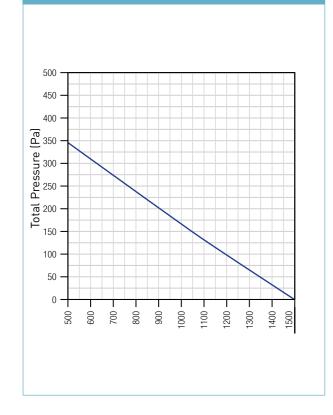
Outdoor Air; -3°C, 75% RH

Return Air; 22°C, 50% RH

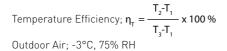
Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

| Model                  |           | RHR 1000                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 310                              |  |  |  |
| Air Flow               | m³/h      | 1000                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 0,975                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 45                               |  |  |  |

 $-\frac{T_2-T_1}{2} \times 100\%$ Temperature Efficiency; η T<sub>3</sub>-T<sub>1</sub>


Outdoor Air; -3°C, 75% RH

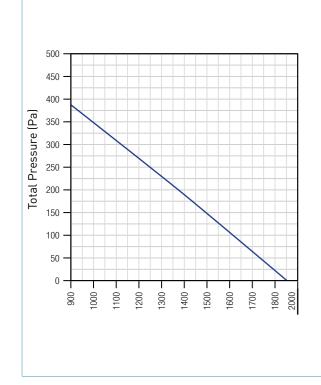
Return Air; 22°C, 50% RH


Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

### **Performance Datas**

### **• RHR 1500** / Air Flow Performance




| Model                  |           | RHR 1500                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 420                              |  |  |  |
| Air Flow               | m³/h      | 1500                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,217                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 46                               |  |  |  |



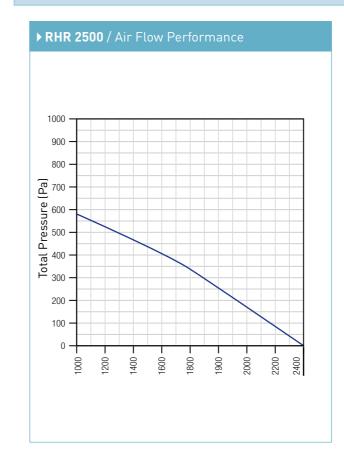
Return Air; 22°C, 50% RH

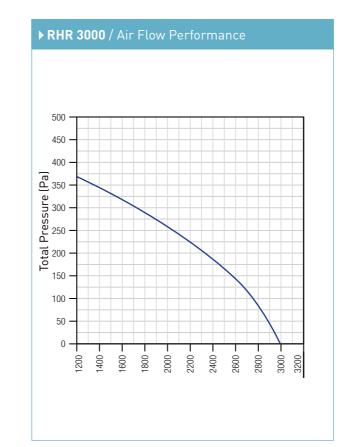
Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

#### **• RHR 2000** / Air Flow Performance



| Model                  |           | RHR 2000                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 1030                             |  |  |  |
| Air Flow               | m³/h      | 1900                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,121                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 48                               |  |  |  |


T<sub>2</sub>-T<sub>1</sub> Temperature Efficiency;  $\eta_{T}$  = - x 100 % T<sub>3</sub>-T<sub>1</sub>


Outdoor Air; -3°C, 75% RH

Return Air; 22°C, 50% RH

Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

### **Performance Datas**





| Model                  |           | RHR 2500                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 1030                             |  |  |  |
| Air Flow               | m³/h      | 2400                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,158                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 59                               |  |  |  |

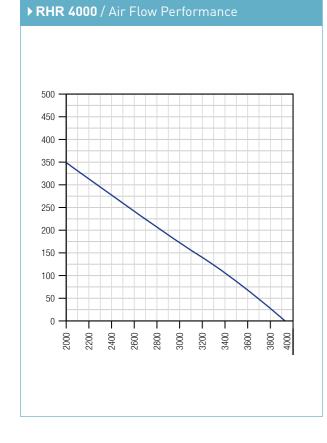
Temperature Efficiency; **η** T.-T.

Outdoor Air; -3°C, 75% RH

Return Air; 22°C, 50% RH

Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

| Model                  |           | RHR 3000                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 750                              |  |  |  |
| Air Flow               | m³/h      | 2970                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,118                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 50                               |  |  |  |


 $-\frac{T_2-T_1}{2} \times 100\%$ Temperature Efficiency;  $\eta_{T}$  = T,-T,

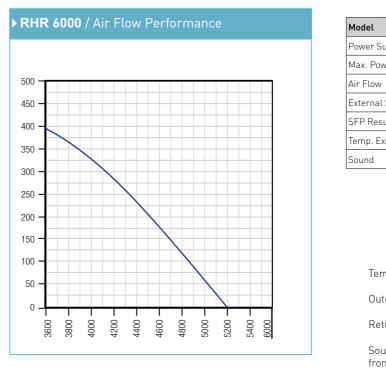
Outdoor Air; -3°C, 75% RH

Return Air; 22°C, 50% RH

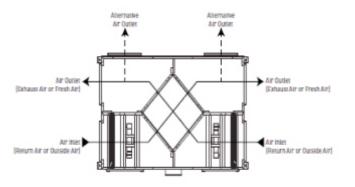
Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

### **Performance Datas**

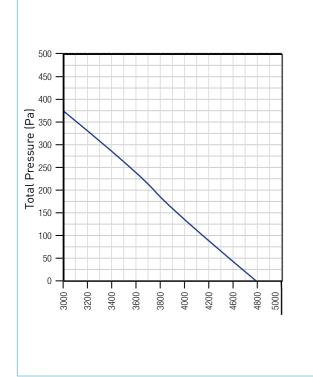



| Model                  |           | RHR 4000                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 940                              |  |  |  |
| Air Flow               | m³/h      | 3830                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,268                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 52                               |  |  |  |

Temperature Efficiency; 
$$\eta_{T} = \frac{T_2 T_1}{T_3 T_1} \times 100 \%$$
  
Outdoor Air; -3°C, 75% RH


Return Air; 22°C, 50% RH

Sound Power Level is measured 1.5 m away from the unit at 250 HZ.


### **Performance Datas**

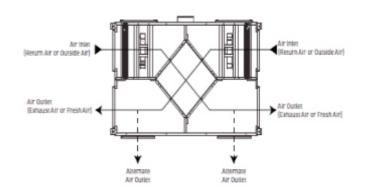


#### **Duct Connection Configuration**








| Model                  |           | RHR 5000                         |  |  |  |
|------------------------|-----------|----------------------------------|--|--|--|
| Power Supply           | 220       | ) - 240 V / Single Phase / 50 Hz |  |  |  |
| Max. Power Consumption | W         | 1360                             |  |  |  |
| Air Flow               | m³/h      | 4700                             |  |  |  |
| External St. Pressure  | Pa        | 0                                |  |  |  |
| SFP Results            | kW/(m³/s) | 1,374                            |  |  |  |
| Temp. Exc. Efficiency  | %         | 55                               |  |  |  |
| Sound                  | dB        | 53                               |  |  |  |

 $-\frac{T_2-T_1}{2} \times 100\%$ Temperature Efficiency;  $\eta_{\tau}$  = T,-T,

Outdoor Air; -3°C, 75% RH

Return Air; 22°C, 50% RH

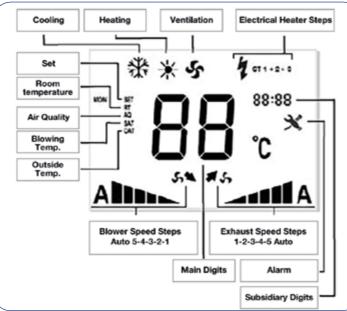
Sound Power Level is measured 1.5 m away from the unit at 250 HZ.



|                 | RHR 6000                           |       |  |
|-----------------|------------------------------------|-------|--|
| upply           | 220 - 240 V / Single Phase / 50 Hz |       |  |
| wer Consumption | W                                  | 1900  |  |
| ,               | m³/h                               | 5200  |  |
| St. Pressure    | Pa                                 | 0     |  |
| sults           | kW/(m³/s)                          | 1,452 |  |
| xc. Efficiency  | %                                  | 55    |  |
|                 | dB                                 | 52    |  |

 $T_{2}-T_{1}$ Temperature Efficiency;  $\eta_{T} =$ x 100 % T<sub>3</sub>-T<sub>1</sub>

Outdoor Air; -3°C, 75% RH


Return Air; 22°C, 50% RH

Sound Power Level is measured 1.5 m away from the unit at 250 HZ.

### Accessories

### Digital Controller





### Advanced Panel Specifications

- 1 Manages exhaust and fresh air fan volumes individually in 5 steps
- 2 Filter service alarm after 1200 hours of performance
- 3 Thermal protection for motors
- 4 Electrical heater connection
- 5 Water Coil connection
- 6 Protection of heaters for
- over-heating
- 7 Boost Function

### ► Standard Panel Specifications

- 1 Manages exhaust and fresh air fan volumes individually in 5 steps.
- 2 Filter service alarm after 1200 hours of performance.
- 3 Thermal protection for motors.

### Pro Panel Specifications

- 1 Manages exhaust and fresh air fan volumes individually in 5 steps
- 2 Filter service alarm after 1200 hours of performance
- 3 Thermal protection for motors
- 4 Electrical heater connection
- 5 Water Coil connection
- 6 Protection of heaters for over-heating
- 7 Boost Function
- 8 Carbondioxide sensor connection
- 9 On/Off and proportional control of the water coil.
- 10 Control of damper motor
- 11 BMS control
- 12 Control of heating and cooling coil valves
- 13 Fire alarm
- 14 Weekly programming
- 15 Thermal check with a sensor located on duck

### Accessories





### Digital Room Controller

RHR units are supplied with a digital room control panel. It can control air flow while changing the exhaust and fresh air flows individually(L/M/H). All the changes could be followed on LCD screen. The mode of the unit can be adjusted to winter or summer. In summer mode only the unit works. In winter mode, Unit and electrical heater works. According to the temperature adjusted on the control panel, electrical heater start up automatically. The "off" button on the control panel stops both electrical heater and unit.

Electrical board comes with the unit, it adopts unit orders coming from room controller. Components like relay, contactor, capacitor and connector are located in electrical board. Required electrical power should be supplied to heater and also to unit

RHR Units can connect to Building Automation System via contactor or MODBUS(RS485). Thereby all the features of the unit can be controlled through a centralized system.

Fresh air and return air flows can be adjusted with automation panel. Thus, negative or positive pressure could be obtained.





↓ +90 236 214 04 34 
 www.renair.com.tr

Muradiye Mah. 18 Sk.Sanatkarlar Koop. Sit. Şevki Baydar Apt. No:8 Yunusemre / Manisa